home *** CD-ROM | disk | FTP | other *** search
- à 4.4 NON-HOMOGENEOUS EQUATIONS; VARIATION OF PARAMETERS
-
- äèFïd ê particular solution, given ê fundmental
- èèèèèèèset ç solutions, ë ê non-homogeneous equation.
-
- â è Forèy»» - 5y» + 6y = 2x + 3
- The fundamental solutions set is eì╣ å eÄ╣.
- Thus assume a particular solution ç ê formè
- u¬(x)eì╣ + u½(x)eÄ╣
- Solvïg yieldsèu¬ = eúì╣(x + 2) u½ = eúÄ╣(-2x/3 + 11/9)
- The particular solution isèx/3 + 7/9
-
- éS è The problem ç solvïg a lïear, NON-HOMOGENEOUS, second
- order differential equation can be split ïë two parts
-
- 1) Solve ê homogeneous differential equation which will
- produce two ïdependent solutions (ê fundamental set
- ç solutions) say y¬ å y½.èThe general solution
- ç ê homogeneous differential equation is
- C¬y¬ + C½y½
-
- 2) Fïd any PARTICULAR SOLUTION ë ê NON-HOMGENEOUS
- differential equation, say y╞.
-
- èèThe general solution ë ê NON-HOMOGENEOUS differential
- equation is ê sum ç êse two solutions
-
- C¬y¬ + C½y½ + y╞
-
- èè In this section, ê METHOD OF VARIATION OF PARAMETERS
- will be used ë fïd PARTICULAR SOLUTIONS ç ê NON-HOMOGEN-
- EOUS differential equation.èThis method is one that will work
- ï general.èIts only restriction is ê ability ë evaluate
- two ïtegrals.èAssumïg ability ë ïtegrate êse ïtegrals
- a particular solution can always be found.
- èè If ê non-homogeneous term is
- a) a polynomial
- b) a real exponential
- c) a real exponential times sï[x] or cos[x]
- Or a lïear combïation ç êse, ê METHOD OF UNDETERMINED
- COEFFICIENTS Section 5.3) can be used MORE EASILY ë fïd a
- particular solution.
- èè The method ç VARIATION OF PARAMETERS assumes that ê form
- ç ê particular solution is as follows,
- y = u¬(x)y¬ + u½(x)y½,
- where y¬ å y½ form ê fundamental solution set ç ê
- homogeneous differential equation å u¬ å u½ are functions
- ç x that will be determïed.
- As êre are TWO unknown functions u¬ å u½, TWO
- EQUATIONS are needed ë solve for êm.èOne will be obtaïed by
- direct substituion ç ê assumed solution ïë ê NON-HOMO-
- GENEOUS differential equation.èThe second condition was
- developed by LAGRANGE who developed this method.è
- èèèDifferentiatïg ê assumed solution yields
- y» = u¬»y¬ + u¬y¬» + u½»y½ +u½y½»
- LaGrange's condition was that ê first å third terms add
- ë zero
- u¬»y¬ + u½»y½ = 0
- èè This leaves ê first derivative as
- y» = u¬y¬» + u½y½»
- èè Differentiatïg agaï å substitutïg ïë ê non-
- homogeneous diferential equation å recallïg that y¬ å
- y½ are solutions ç ê homogeneous differential equation
- yield ê second condition that
- u¬»y¬» + u½»y½» = g(x)
- Thus we have ê system ç equations
- u¬»y¬è+ u½»y½è= 0
- u¬»y¬» + u½»y½» = g(x)
- ï ê two unknowns u¬» å u½».
- èè Solvïg this system by use ç Cramer's Rule yields
- y½(x)g(x)
- u¬» = - ───────────
- èW(y¬;y½)
- y¬(x)g(x)
- u½» =è ───────────
- èW(y¬;y½)
- where W(y¬;y½) is ê WRONKSIAN ç y¬ å y½ explaïed ï
- Section 5.1 å is given by
- è ▒èy¬è y½è│
- W(y¬;y½) = ▒èèèèè │è=è y¬y½» - y¬»y½
- è ▒èy¬»èy½» │
- èè The two functions u¬ å u½ can now be found by
- ïtegration
- ░èy½(x)g(x)
- u¬ = -è▒ ─────────── dx
- ▓èW(y¬;y½)
- ░èy¬(x)g(x)
- u½ =èè▒ ─────────── dx
- ▓è W(y¬;y½)
- The only obstacle ï this method lies ï ê ability ë
- evaluate êse ïtegrals.èWhen this is done, ê
- particular solution is
- y = u¬(x)y¬ + u½(x)y½
- å ê general solution is
- y = C¬y¬ + C½y½ + u¬(x)y¬ + u½(x)y½
-
- 1èèy»» + 4y» + 3y = 2xèFundamental set are eú╣ å eúÄ╣
-
-
- A) 2/3 x + 8/9 B) 2/3 x - 8/9
-
- C) -2/3 x + 8/9 D) -2/3 x - 8/9
-
- ü The Wronskian ç ê fundamental solution set is
- èè │èeú╣èeúÄ╣è│
- W =è│èèèèèè │
- èè │ -eú╣ -3eúÄ╣ │
-
- è=è-3eú╣eúÄ╣ + eú╣eúÄ╣
-
- è=è-2eúÅ╣
- èèè ░èeúÄ╣ (2x)
- u¬ = - ▒ ─────────── dx
- èèè ▓è -2eúÅ╣
- èèè ░
- è =è ▒ x e╣ dx
- èèè ▓
- This is ïtegrated by parts usïg
- u = xèsoèdu = dx
- dv = e╣dxèsoèv = e╣
- è ░
- u¬ = xe╣ - ▒ e╣ dx
- è ▓
- which ïtegrates ë
- u¬ = xe╣ - e╣
- Similarly
- èèè░èeú╣ (2x)
- u½ =è▒ ────────── dx
- èèè▓è -2eúÅ╣
- èèèè░
- è =è- ▒ x eÄ╣ dx
- èèèè▓
- This is ïtegrated by parts usïg
- u = xèsoèdu = dx
- dv = eÄ╣dxèsoèv = eÄ╣/3
- èèè ░
- u½ = -xeÄ╣/3 + ▒ eÄ╣/3 dx
- èèè ▓
- which ïtegrates ë
- u½ = - xeÄ╣/3 + eÄ╣/9
-
- The particular solution becomes
- y╞ = (xe╣ - e╣)eú╣ + (- xeÄ╣/3 + eÄ╣/9)eúÄ╣
-
- è =èx - 1 - x/3 + 1/9
-
- è =è2/3 xè-è8/9
-
- The general solution is
- C¬eú╣ + C½eúÄ╣ + 2/3 xè- 8/9
-
- ÇèB
-
-
- 2èy»» - 4y» + 3y = 5eÄ╣ ; Fundamental set are e╣ å eÄ╣
-
-
- A) 5/2 xeÄ╣ B) 5/2 eÄ╣
-
- C) -5/2 xeÄ╣ D) -5/2 eÄ╣
-
- ü The Wronskian ç ê fundamental solution set is
- èè │èe╣èèeÄ╣è│
- W =è│èèèèèè │
- èè │èe╣è 3eÄ╣è│
-
- è=è3e╣eÄ╣ - e╣eÄ╣
-
- è=è2eÅ╣
- èèè ░èeÄ╣ (5eÄ╣)
- u¬ = - ▒ ─────────── dx
- èèè ▓èè 2eÅ╣
- èèè 5 ░
- è = - ─ ▒èe║╣ dx
- èèè 2 ▓
- This is ïtegrated directly ë
-
- u¬ =è-5/4 eì╣
-
- Similarly
- èèè░èe╣ (5eÄ╣)
- u½ =è▒ ────────── dx
- èèè▓èè2eÅ╣
- èèè5 ░
- è =è─ ▒ dx
- èèè2 ▓
- This is ïtegrated directly ë
- u½ = 5/2 x
- The particular solution becomes
- y╞ = (-5/4 eì╣)e╣ + (5/2 x)eÄ╣
-
- è =è5/2 x eÄ╣ - 5/4 eÄ╣
- As eÄ╣ is part ç ê fundamental set, ê second term is
- redundant ï ê general solution so ê particular solution
- is, most simply
- è =è5/2 x eÄ╣
-
- The general solution is
- C¬eú╣ + C½eúÄ╣ + 5/2 x eÄ╣
-
- ÇèA
-
-
- 3èy»» + y = sï[x]èFundamental set are cos[x] å sï[x]
-
- A) 1/2 x sï[x] B) 1/2 x cos[x]
-
- C) -1/2 x sï[x] D) -1/2 x cos[x]
-
- ü The Wronskian ç ê fundamental solution set is
- èè │ècos[x]è sï[x]è│
- W =è│èèèèèèèèè │
- èè │ -sï[x]è cos[x]è│
-
- è=ècosì[x] + sïì[x]
-
- è=è1
- èèè ░èsï[x] (sï[x])
- u¬ = - ▒ ───────────────── dx
- èèè ▓èèèè 1
- èèè ░
- è = - ▒ sïì[x] dx
- èèè ▓
- This is ïtegrated by double angle substituion
- ░è1 - cos[2x]
- u¬ =è- ▒ ───────────── dx
- ▓èèè 2
- which ïtegrates
- u¬ = -x/2 + sï[2x]/4
- Usïg ê double angle identity
- u¬ = -x/2 + sï[x]cos[x]/2
- Similarly
- èèè░ècos[x] (sï[x])
- u½ =è▒ ───────────────── dx
- èèè▓èèèè 1
- èèèè░
- è =èè▒ sï[x] cos[x] dx
- èèèè▓
- This is ïtegrated by substituion usïg
- u = sï[x]èsoèdu = cos[x] dx
- èèè░
- u½ =è▒ u du
- èèè▓
- which ïtegrates ë
- u½ = uì/2
- Changïg back ë ê origïal ïtegration variable
- u½ = sïì[x]/2
- The particular solution becomes
- èè y╞ = (-x/2 + sï[x]cos[x]/2)cos[x] + ( sïì[x]/2)sï[x]
-
- è =è-x cos[x]/2 + sï[x]/2 {così[x] + sïì[x]}
-
- è =è-x cos[x]/2 + sï[x]/2è
- As sï[x] is part ç ê fundamental set, ê second term is
- redundant ï ê general solution so ê particular solution
- is, most simply
- y╞ = - 1/2 x cos[x]
- The general solution is
- C¬cos[x] + C½sï[x] - 1/2 x cos[x]
-
- ÇèD
-
- 4èèx║y»» - 6y = 2x + 4èFundamental set are xÄ å xú║
-
- A) 2/5 xÄln[x] + xì B) 2/5 xÄln[x] - xì
-
- C) - 2/5 xÄln[x] + xì D) - 2/5 xÄ ln[x] - xì
-
- ü The Wronskian ç ê fundamental solution set is
- èè │è xÄèèxúìè │
- W =è│èèèèèèè │
- èè │è3xìè -2xúÄè│
-
- è=è-2xÄxúÄ - 3xìxúì
-
- è=è-5
- èèè ░èxúì (2x+4)
- u¬ = - ▒ ──────────── dx
- èèè ▓èèè-5
- èè 2è░èdxèè 4è░èdx
- è = ─è▒ ────è+ ─è▒ ────
- èè 5è▓è xèè 5è▓èx║
- This is ïtegrated by ê power rule
- u¬ = 2/5 ln[x] - 4/5 xúî
-
- Similarly
- èèè░èxÄ (2x+4)
- u½ =è▒ ─────────── dx
- èèè▓èèè5
-
- èèè 2è░èèèèè4è░
- è = - ─è▒ xÅ dxè- ─è▒ xÄ dx
- èèè 5è▓èèèèè5è▓
- This is ïtegrated by ê power rule
- u½ =è- 2/25 xÉ - 1/5 xÅ
- The particular solution becomes
- èè y╞ = (2/5 ln[x] - 4/5 xúî)xÄ
- è+ (- 2/25 xÉ - 1/5 xÅ)xúì
-
- è =è2/5 xÄ ln[x] - 4/5 xì - 2/25 xÄ - 1/5 xì
-
- è =è2/5 xÄ ln[x] - 2/25 xÄ -èxì
- As xÄ is part ç ê fundamental set, ê second term is
- redundant ï ê general solution so ê particular solution
- is, most simply
- y╞ = 2/5 xÄ ln[x] - xì
- The general solution is
- C¬xÄ + C½xúìè+ 2/5 xÄ ln[x] - xì
-
- ÇèB
-
- 5èy»» + y = cot[x]èFundamental set are cos[x] å sï[x]
-
- A) sï[x] ln│csc[x] + cot[x]│
- B) -sï[x] ln│csc[x] + cot[x]│
- C) cos[x] ln│csc[x] + cot[x]│
- D) -cos[x] ln│csc[x] + cot[x]│
-
- ü The Wronskian ç ê fundamental solution set is
- èè │ècos[x]è sï[x]è│
- W =è│èèèèèèèèè │
- èè │ -sï[x]è cos[x]è│
-
- è=ècosì[x] + sïì[x]
-
- è=è1
- èèè ░èsï[x] (cot[x])
- u¬ = - ▒ ───────────────── dx
- èèè ▓èèèè 1
- èèè ░èèèè cos[x]
- è = - ▒ sï[x] ──────── dx
- èèè ▓èèèè sï[x]
- èèè ░èèèè
- è = - ▒ cos[x] dx
- èèè ▓èèèè
- This is ïtegrated directly ë
-
- u¬ = -sï[x]
- Similarly
-
- èèè░ècos[x] (cot[x])
- u½ =è▒ ───────────────── dx
- èèè▓èèèè 1
- èèè░ èèèècos[x]
- è =è▒ cos[x] ──────── dx
- èèè▓ èèèèsï[x]
- èèè░ècosì[x]
- è =è▒ ───────── dx
- èèè▓èsï[x]
- èèè░è1 -sïì[x]
- è =è▒ ──────────── dx
- èèè▓èèsï[x]
- èèè░è
- è =è▒ csc[x] - sï[x] dx
- èèè▓è
- which ïtegrates ë
- u½ =è- ln │ csc[x] + cot[x] │ + cos[x]
- The particular solution becomes
- èè y╞ = (- sï[x])cos[x]
- + (-ln│ csc[x] + cot[x] │ + cos[x])sï[x]
-
- è =è-sï[x] cos[x] + sï[x] ln│ csc[x] + cot[x] │
- + sï[x] cos[x]
-
- è =è sï[x] ln│ csc[x] + cot[x] │
-
- The general solution is
- C¬cos[x] + C½sï[x] + sï[x]ln│ csc[x] + cot[x] │
-
- ÇèA
-
-
-
-
-
-