home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Multimedia Differential Equations
/
Multimedia Differential Equations.ISO
/
diff
/
chapter4.4p
< prev
next >
Wrap
Text File
|
1996-08-13
|
9KB
|
376 lines
à 4.4 NON-HOMOGENEOUS EQUATIONS; VARIATION OF PARAMETERS
äèFïd ê particular solution, given ê fundmental
èèèèèèèset ç solutions, ë ê non-homogeneous equation.
â è Forèy»» - 5y» + 6y = 2x + 3
The fundamental solutions set is eì╣ å eÄ╣.
Thus assume a particular solution ç ê formè
u¬(x)eì╣ + u½(x)eÄ╣
Solvïg yieldsèu¬ = eúì╣(x + 2) u½ = eúÄ╣(-2x/3 + 11/9)
The particular solution isèx/3 + 7/9
éS è The problem ç solvïg a lïear, NON-HOMOGENEOUS, second
order differential equation can be split ïë two parts
1) Solve ê homogeneous differential equation which will
produce two ïdependent solutions (ê fundamental set
ç solutions) say y¬ å y½.èThe general solution
ç ê homogeneous differential equation is
C¬y¬ + C½y½
2) Fïd any PARTICULAR SOLUTION ë ê NON-HOMGENEOUS
differential equation, say y╞.
èèThe general solution ë ê NON-HOMOGENEOUS differential
equation is ê sum ç êse two solutions
C¬y¬ + C½y½ + y╞
èè In this section, ê METHOD OF VARIATION OF PARAMETERS
will be used ë fïd PARTICULAR SOLUTIONS ç ê NON-HOMOGEN-
EOUS differential equation.èThis method is one that will work
ï general.èIts only restriction is ê ability ë evaluate
two ïtegrals.èAssumïg ability ë ïtegrate êse ïtegrals
a particular solution can always be found.
èè If ê non-homogeneous term is
a) a polynomial
b) a real exponential
c) a real exponential times sï[x] or cos[x]
Or a lïear combïation ç êse, ê METHOD OF UNDETERMINED
COEFFICIENTS Section 5.3) can be used MORE EASILY ë fïd a
particular solution.
èè The method ç VARIATION OF PARAMETERS assumes that ê form
ç ê particular solution is as follows,
y = u¬(x)y¬ + u½(x)y½,
where y¬ å y½ form ê fundamental solution set ç ê
homogeneous differential equation å u¬ å u½ are functions
ç x that will be determïed.
As êre are TWO unknown functions u¬ å u½, TWO
EQUATIONS are needed ë solve for êm.èOne will be obtaïed by
direct substituion ç ê assumed solution ïë ê NON-HOMO-
GENEOUS differential equation.èThe second condition was
developed by LAGRANGE who developed this method.è
èèèDifferentiatïg ê assumed solution yields
y» = u¬»y¬ + u¬y¬» + u½»y½ +u½y½»
LaGrange's condition was that ê first å third terms add
ë zero
u¬»y¬ + u½»y½ = 0
èè This leaves ê first derivative as
y» = u¬y¬» + u½y½»
èè Differentiatïg agaï å substitutïg ïë ê non-
homogeneous diferential equation å recallïg that y¬ å
y½ are solutions ç ê homogeneous differential equation
yield ê second condition that
u¬»y¬» + u½»y½» = g(x)
Thus we have ê system ç equations
u¬»y¬è+ u½»y½è= 0
u¬»y¬» + u½»y½» = g(x)
ï ê two unknowns u¬» å u½».
èè Solvïg this system by use ç Cramer's Rule yields
y½(x)g(x)
u¬» = - ───────────
èW(y¬;y½)
y¬(x)g(x)
u½» =è ───────────
èW(y¬;y½)
where W(y¬;y½) is ê WRONKSIAN ç y¬ å y½ explaïed ï
Section 5.1 å is given by
è ▒èy¬è y½è│
W(y¬;y½) = ▒èèèèè │è=è y¬y½» - y¬»y½
è ▒èy¬»èy½» │
èè The two functions u¬ å u½ can now be found by
ïtegration
░èy½(x)g(x)
u¬ = -è▒ ─────────── dx
▓èW(y¬;y½)
░èy¬(x)g(x)
u½ =èè▒ ─────────── dx
▓è W(y¬;y½)
The only obstacle ï this method lies ï ê ability ë
evaluate êse ïtegrals.èWhen this is done, ê
particular solution is
y = u¬(x)y¬ + u½(x)y½
å ê general solution is
y = C¬y¬ + C½y½ + u¬(x)y¬ + u½(x)y½
1èèy»» + 4y» + 3y = 2xèFundamental set are eú╣ å eúÄ╣
A) 2/3 x + 8/9 B) 2/3 x - 8/9
C) -2/3 x + 8/9 D) -2/3 x - 8/9
ü The Wronskian ç ê fundamental solution set is
èè │èeú╣èeúÄ╣è│
W =è│èèèèèè │
èè │ -eú╣ -3eúÄ╣ │
è=è-3eú╣eúÄ╣ + eú╣eúÄ╣
è=è-2eúÅ╣
èèè ░èeúÄ╣ (2x)
u¬ = - ▒ ─────────── dx
èèè ▓è -2eúÅ╣
èèè ░
è =è ▒ x e╣ dx
èèè ▓
This is ïtegrated by parts usïg
u = xèsoèdu = dx
dv = e╣dxèsoèv = e╣
è ░
u¬ = xe╣ - ▒ e╣ dx
è ▓
which ïtegrates ë
u¬ = xe╣ - e╣
Similarly
èèè░èeú╣ (2x)
u½ =è▒ ────────── dx
èèè▓è -2eúÅ╣
èèèè░
è =è- ▒ x eÄ╣ dx
èèèè▓
This is ïtegrated by parts usïg
u = xèsoèdu = dx
dv = eÄ╣dxèsoèv = eÄ╣/3
èèè ░
u½ = -xeÄ╣/3 + ▒ eÄ╣/3 dx
èèè ▓
which ïtegrates ë
u½ = - xeÄ╣/3 + eÄ╣/9
The particular solution becomes
y╞ = (xe╣ - e╣)eú╣ + (- xeÄ╣/3 + eÄ╣/9)eúÄ╣
è =èx - 1 - x/3 + 1/9
è =è2/3 xè-è8/9
The general solution is
C¬eú╣ + C½eúÄ╣ + 2/3 xè- 8/9
ÇèB
2èy»» - 4y» + 3y = 5eÄ╣ ; Fundamental set are e╣ å eÄ╣
A) 5/2 xeÄ╣ B) 5/2 eÄ╣
C) -5/2 xeÄ╣ D) -5/2 eÄ╣
ü The Wronskian ç ê fundamental solution set is
èè │èe╣èèeÄ╣è│
W =è│èèèèèè │
èè │èe╣è 3eÄ╣è│
è=è3e╣eÄ╣ - e╣eÄ╣
è=è2eÅ╣
èèè ░èeÄ╣ (5eÄ╣)
u¬ = - ▒ ─────────── dx
èèè ▓èè 2eÅ╣
èèè 5 ░
è = - ─ ▒èe║╣ dx
èèè 2 ▓
This is ïtegrated directly ë
u¬ =è-5/4 eì╣
Similarly
èèè░èe╣ (5eÄ╣)
u½ =è▒ ────────── dx
èèè▓èè2eÅ╣
èèè5 ░
è =è─ ▒ dx
èèè2 ▓
This is ïtegrated directly ë
u½ = 5/2 x
The particular solution becomes
y╞ = (-5/4 eì╣)e╣ + (5/2 x)eÄ╣
è =è5/2 x eÄ╣ - 5/4 eÄ╣
As eÄ╣ is part ç ê fundamental set, ê second term is
redundant ï ê general solution so ê particular solution
is, most simply
è =è5/2 x eÄ╣
The general solution is
C¬eú╣ + C½eúÄ╣ + 5/2 x eÄ╣
ÇèA
3èy»» + y = sï[x]èFundamental set are cos[x] å sï[x]
A) 1/2 x sï[x] B) 1/2 x cos[x]
C) -1/2 x sï[x] D) -1/2 x cos[x]
ü The Wronskian ç ê fundamental solution set is
èè │ècos[x]è sï[x]è│
W =è│èèèèèèèèè │
èè │ -sï[x]è cos[x]è│
è=ècosì[x] + sïì[x]
è=è1
èèè ░èsï[x] (sï[x])
u¬ = - ▒ ───────────────── dx
èèè ▓èèèè 1
èèè ░
è = - ▒ sïì[x] dx
èèè ▓
This is ïtegrated by double angle substituion
░è1 - cos[2x]
u¬ =è- ▒ ───────────── dx
▓èèè 2
which ïtegrates
u¬ = -x/2 + sï[2x]/4
Usïg ê double angle identity
u¬ = -x/2 + sï[x]cos[x]/2
Similarly
èèè░ècos[x] (sï[x])
u½ =è▒ ───────────────── dx
èèè▓èèèè 1
èèèè░
è =èè▒ sï[x] cos[x] dx
èèèè▓
This is ïtegrated by substituion usïg
u = sï[x]èsoèdu = cos[x] dx
èèè░
u½ =è▒ u du
èèè▓
which ïtegrates ë
u½ = uì/2
Changïg back ë ê origïal ïtegration variable
u½ = sïì[x]/2
The particular solution becomes
èè y╞ = (-x/2 + sï[x]cos[x]/2)cos[x] + ( sïì[x]/2)sï[x]
è =è-x cos[x]/2 + sï[x]/2 {così[x] + sïì[x]}
è =è-x cos[x]/2 + sï[x]/2è
As sï[x] is part ç ê fundamental set, ê second term is
redundant ï ê general solution so ê particular solution
is, most simply
y╞ = - 1/2 x cos[x]
The general solution is
C¬cos[x] + C½sï[x] - 1/2 x cos[x]
ÇèD
4èèx║y»» - 6y = 2x + 4èFundamental set are xÄ å xú║
A) 2/5 xÄln[x] + xì B) 2/5 xÄln[x] - xì
C) - 2/5 xÄln[x] + xì D) - 2/5 xÄ ln[x] - xì
ü The Wronskian ç ê fundamental solution set is
èè │è xÄèèxúìè │
W =è│èèèèèèè │
èè │è3xìè -2xúÄè│
è=è-2xÄxúÄ - 3xìxúì
è=è-5
èèè ░èxúì (2x+4)
u¬ = - ▒ ──────────── dx
èèè ▓èèè-5
èè 2è░èdxèè 4è░èdx
è = ─è▒ ────è+ ─è▒ ────
èè 5è▓è xèè 5è▓èx║
This is ïtegrated by ê power rule
u¬ = 2/5 ln[x] - 4/5 xúî
Similarly
èèè░èxÄ (2x+4)
u½ =è▒ ─────────── dx
èèè▓èèè5
èèè 2è░èèèèè4è░
è = - ─è▒ xÅ dxè- ─è▒ xÄ dx
èèè 5è▓èèèèè5è▓
This is ïtegrated by ê power rule
u½ =è- 2/25 xÉ - 1/5 xÅ
The particular solution becomes
èè y╞ = (2/5 ln[x] - 4/5 xúî)xÄ
è+ (- 2/25 xÉ - 1/5 xÅ)xúì
è =è2/5 xÄ ln[x] - 4/5 xì - 2/25 xÄ - 1/5 xì
è =è2/5 xÄ ln[x] - 2/25 xÄ -èxì
As xÄ is part ç ê fundamental set, ê second term is
redundant ï ê general solution so ê particular solution
is, most simply
y╞ = 2/5 xÄ ln[x] - xì
The general solution is
C¬xÄ + C½xúìè+ 2/5 xÄ ln[x] - xì
ÇèB
5èy»» + y = cot[x]èFundamental set are cos[x] å sï[x]
A) sï[x] ln│csc[x] + cot[x]│
B) -sï[x] ln│csc[x] + cot[x]│
C) cos[x] ln│csc[x] + cot[x]│
D) -cos[x] ln│csc[x] + cot[x]│
ü The Wronskian ç ê fundamental solution set is
èè │ècos[x]è sï[x]è│
W =è│èèèèèèèèè │
èè │ -sï[x]è cos[x]è│
è=ècosì[x] + sïì[x]
è=è1
èèè ░èsï[x] (cot[x])
u¬ = - ▒ ───────────────── dx
èèè ▓èèèè 1
èèè ░èèèè cos[x]
è = - ▒ sï[x] ──────── dx
èèè ▓èèèè sï[x]
èèè ░èèèè
è = - ▒ cos[x] dx
èèè ▓èèèè
This is ïtegrated directly ë
u¬ = -sï[x]
Similarly
èèè░ècos[x] (cot[x])
u½ =è▒ ───────────────── dx
èèè▓èèèè 1
èèè░ èèèècos[x]
è =è▒ cos[x] ──────── dx
èèè▓ èèèèsï[x]
èèè░ècosì[x]
è =è▒ ───────── dx
èèè▓èsï[x]
èèè░è1 -sïì[x]
è =è▒ ──────────── dx
èèè▓èèsï[x]
èèè░è
è =è▒ csc[x] - sï[x] dx
èèè▓è
which ïtegrates ë
u½ =è- ln │ csc[x] + cot[x] │ + cos[x]
The particular solution becomes
èè y╞ = (- sï[x])cos[x]
+ (-ln│ csc[x] + cot[x] │ + cos[x])sï[x]
è =è-sï[x] cos[x] + sï[x] ln│ csc[x] + cot[x] │
+ sï[x] cos[x]
è =è sï[x] ln│ csc[x] + cot[x] │
The general solution is
C¬cos[x] + C½sï[x] + sï[x]ln│ csc[x] + cot[x] │
ÇèA